Replacement or exclusion of the B-branch bacteriopheophytin in the purple bacterial reaction centre: the H(B) cofactor is not required for assembly or core function of the Rhodobacter sphaeroides complex.
نویسندگان
چکیده
All of the membrane-embedded cofactors of the purple bacterial reaction centre have well-defined functional or structural roles, with the exception of the bacteriopheophytin (H(B)) located approximately half-way across the membrane on the so-called inactive- or B-branch of cofactors. Sequence alignments indicate that this bacteriochlorin cofactor is a conserved feature of purple bacterial reaction centres, and a pheophytin is also found at this position in the Photosystem-II reaction centre. Possible structural or functional consequences of replacing the H(B) bacteriopheophytin by bacteriochlorophyll were investigated in the Rhodobacter sphaeroides reaction centre through mutagenesis of residue Leu L185 to His (LL185H). Results from absorbance spectroscopy indicated that the LL185H mutant assembled with a bacteriochlorophyll at the H(B) position, but this did not affect the capacity of the reaction centre to support photosynthetic growth, or change the kinetics of charge separation along the A-branch of cofactors. It was also found that mutation of residue Ala M149 to Trp (AM149W) caused the reaction centre to assemble without an H(B) bacteriochlorin, demonstrating that this cofactor is not required for correct assembly of the reaction centre. The absence of a cofactor at this position did not affect the capacity of the reaction centre to support photosynthetic growth, or the kinetics of A-branch electron transfer. A combination of X-ray crystallography and FTIR difference spectroscopy confirmed that the H(B) cofactor was absent in the AM149W mutant, and that this had not produced any significant disturbance of the adjacent ubiquinol reductase (Q(B)) site. The data are discussed with respect to possible functional roles of the H(B) bacteriopheophytin, and we conclude that the reason(s) for conservation of a bacteriopheophytin cofactor at this position in purple bacterial reaction centres are likely to be different from those underlying conservation of a pheophytin at the analogous position in Photosystem-II.
منابع مشابه
Investigation of B-branch electron transfer by femtosecond time resolved spectroscopy in a Rhodobacter sphaeroides reaction centre that lacks the Q(A) ubiquinone.
The dynamics of electron transfer in a membrane-bound Rhodobacter sphaeroides reaction centre containing a combination of four mutations were investigated by transient absorption spectroscopy. The reaction centre, named WAAH, has a mutation that causes the reaction centre to assemble without a Q(A) ubiquinone (Ala M260 to Trp), a mutation that causes the replacement of the H(A) bacteriopheophyt...
متن کاملEarly bacteriopheophytin reduction in charge separation in reaction centers of Rhodobacter sphaeroides.
A question at the forefront of biophysical sciences is, to what extent do quantum effects and protein conformational changes play a role in processes such as biological sensing and energy conversion? At the heart of photosynthetic energy transduction lie processes involving ultrafast energy and electron transfers among a small number of tetrapyrrole pigments embedded in the interior of a protei...
متن کاملCharacterization of bacteriopheophytin a in the active branch of the reaction center of Rhodobacter sphaeroides by 13C photo-CIDNP MAS NMR
The electronic structure of the primary electron acceptor, bacteriopheophytin a (A), in photosynthetic reaction centers (RCs) of the purple bacterium Rhodobacter (R.) sphaeroides is investigated by photochemically induced dynamic nuclear polarization (photo-CIDNP) magic-angle spinning (MAS) NMR spectroscopy. Uniformly labelled RCs have been prepared for these experiments, by adding the u-13C4-...
متن کاملInitial electron-transfer in the reaction center from Rhodobacter sphaeroides.
The initial electron transfer steps in the photosynthetic reaction center of the purple bacterium Rhodobacter sphaeroides have been investigated by femtosecond time-resolved spectroscopy. The experimental data taken at various wavelengths demonstrate the existence of at least four intermediate states within the first nanosecond. The difference spectra of the intermediates and transient photodic...
متن کاملInfluence of M subunit Thr222 and Trp252 on quinone binding and electron transfer in Rhodobacter sphaeroides reaction centres.
M subunit Trp252 is the only amino acid residue which is located between the bacteriopheophytin HA and the quinone QA in the photosynthetic reaction centre of Rhodobacter sphaeroides. Oligodeoxynucleotide-directed mutagenesis was employed to elucidate the influence of this aromatic amino acid on the electron transfer between these two chromophores. For this, M subunit Trp252 was changed to tyro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1710 1 شماره
صفحات -
تاریخ انتشار 2005